US009304892B2

a2 United States Patent 10) Patent No.: US 9,304,892 B2
Schur et al. (45) Date of Patent: Apr. 5, 2016
(54) DETERMINING BEHAVIOR MODELS 2006/0075305 Al 4/2006 Robinson et al.
2007/0050758 Al* 3/2007 Arevalo ... GOGF 17/5027
H . ; . 717/135
(71) Applicants: Matthias Schur, Darmstadt (DE); 2008/0263503 Al 10/2008 Polly et al.
Andreas Roth, Walzbachtal (DE) 2009/0307664 Al 12/2009 Huuck et al.
2013/0239092 Al 9/2013 Wieczorek et al.
(72) Inventors: Matthias Schur, Darmstadt (DE); 383; 83 égj“g% ﬁ} i éggg E_HPP etlaL
1u et al.
Andreas Roth, Walzbachtal (DE) 2013/0338995 AL* 12/2013 BIKInS ..o GOGF 17/28
. 704/2
(73) Assignee: SAP SE, Walldorf (DE) 2013/0339930 AL* 12/2013 XU oo GOGF 11/3684
717/125
(*) Notice: Subject to any disclaimer, the term of this 2014/0130014 Al* 52014 Jensen GOG6F 11/3684
patent is extended or adjusted under 35 717/124
(21) Appl. No.: 13/908,244 J. Cortadella, et al., “Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers,” IEICE
(22) Filed: Jun. 3, 2013 Transactions on Information and Systems, vol. 80, No. 3 (1997), pp.
315-325.
(65) Prior Publication Data A. Mesbah, et al., “Crawling Ajax-Based Web Applications through
Dynamic Analysis of User Interface State Changes,” ACM Transac-
US 2014/0359371 Al Dec. 4,2014 tions on the Web, vol. 6, No. 1 (2012), 30 pages.
(5 l) Int. CI1. (Continued)
GO6F 11/36 (2006.01)
(52) U.S.CL Primary Examiner — Jigar Patel
CPC .o, GO6F 11/3684 (2013.01)
(58) Field of Classification Search G7) ABSTRACT
CPC GOO6F 11/3684; GOGF 11/3688; GO6F Methods, systems, and computer-readable storage media
11/263; GOG6F 11/3672 determining a behavior model of a computing system under
See application file for complete search history. test. In some implementations, actions include executing,
using a user interface ofa computing SUT, an initial test script
(56) References Cited on the SUT; recording, after executing the initial test script, a
state of the SUT in the behavior model by observing one or
U.S. PATENT DOCUMENTS more events that can be triggered using the user interface of
6.577.982 Bl 6/2003 Eib the SUT; and iteratively refining the behavior model until an
7,480,602 B2 1/2009 Duffie et al. end condition is reached by generating one or more new test
7,725,851 B2 5/2010 Eisner et al. scripts, executing the new test scripts on the SUT to test
7,813,911 B2 10/2010 Triou et al. unobserved behavior, and recording one or more new states
;’ggg’ggg E% 1};58}(1) gﬁ;:?é%;t al. reached by executing the new test scripts on the SUT in the
8166347 B2 4/2012 Kirtkow et al. behavior model.
8,527,954 B2 9/2013 Benameur et al.
8,667,467 B2 3/2014 Dubey et al. 17 Claims, 4 Drawing Sheets

100‘&

Modeling System

110
Canfig

Crawl Controller

Z 108

Model

)—118

Test Scripts)

)—106

11
“| Web Browser

1021 112
-
| \

| Web Browser

116
Event Listeners

104—(

System Under Test

US 9,304,892 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

A. Mesbah, et al., “Invariant-Based Automatic Testing of Modern
Web Applications,” IEEE Transactions on Software Engineering,
vol. 38, No. 1 (2012), pp. 35-53.

M. Schur, et al., “Mining Behavior Models from Enterprise Web
Applications,” ESEC/FSE 2013, Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, Aug. 2013, pp.
422-432.

* cited by examiner

US 9,304,892 B2

Sheet 1 of 4

Apr. 5, 2016

U.S. Patent

L "OId

1] Jopun weisAg

les

Y

slous)sI] JusA]

——1

eEIA

siduog 1881

8Ll

801

Jesmolg qopn

N Jojoy — =

Jesmolg gop

le:

| 10j0y

Jg|jonuo) meld

0Ll

wesAg Bulispopy

JIN:

Byuon

MNE

oo

U.S. Patent Apr. 5, 2016 Sheet 2 of 4

2,
$ N
b

F %
s $ e
confirm ¢ e,
§ § % e
&

o \3 \\«‘k*-\\"\\

¢ Sdecline K
202 3

‘ | SRR w§‘§¥ er

FIG. 2B

US 9,304,892 B2

‘j 200

‘j 220

U.S. Patent

[300

Apr. 5, 2016

302 1

Receive
configuration
information

Y

304 —k

Execute initial test
script(s)

]

Observe current

J— 306

state
308
N tate?
ew state N
Y

Record new state

j‘310

Y

More
scripts?

Generate test
scripts

I312

Y

Sheet 3 of 4

Reset or

Execute a new
test script

backtrack if
necessary

i

314

FIG. 3

US 9,304,892 B2

I 320

Store model

I318

U.S. Patent

|z —
7 0
=0

=0
3
———_)
S——_—

Apr. 5, 2016

Sheet 4 of 4

Input/Output

\]
\ -+
\ N

\
TRl
o g
\ I (111 5
\ 1 L=
- 1]
TTTT
T] L1l
]| T - L
1 H T
] L1l
| 1] —
TTTT
L
(S
S
/ o
/ 4
/
/ S
/ o

< 450

Input/Output

Storage Device

=
A

US 9,304,892 B2

FIG. 4

US 9,304,892 B2

1
DETERMINING BEHAVIOR MODELS

BACKGROUND

System testing is an important part of quality assurance in
software engineering. System tests are typically end-to-end
tests, written by test engineers based on scenarios derived
from the requirements and use cases of the system under test
(SUT). From these scenarios, manual test cases can be cre-
ated that are performed by human testers to ensure the func-
tional correctness of the SUT.

Test automation aims to automate these manual test cases,
so that the tests can be performed repeatedly and in a highly
reliable manner on different versions of the SUT, e.g., regres-
sion testing. Creating automated system tests can be challeng-
ing, e.g., because the test engineers writing system tests have
not developed the functionality and need to learn the SUT,
and because automating test cases is time consuming and
changes in the SUT can often require corresponding changes
to some automated tests.

Model based testing (MBT) aims to increase the level of
automation in test design by introducing formal behavior
models that are used to algorithmically derive test cases.
Using MBT, the number of test cases can be more easily
adjusted based on an available time frame and targeted cov-
erage goals. Creating and maintaining formal behavior mod-
els that are suitable for MBT can require great knowledge of
the SUT and the modeling language used for the behavior
model, which can prevent the adoption of MBT in industrial
software engineering.

SUMMARY

Implementations of the present disclosure include com-
puter-implemented methods for determining a behavior
model of a computing system under test. In some implemen-
tations, actions include executing, using a user interface of the
SUT, an initial test script on the SUT; recording, after execut-
ing the initial test script, a state of the SUT in the behavior
model by observing one or more events that can be triggered
using the user interface of the SUT; and iteratively refining the
behavior model until an end condition is reached by generat-
ing one or more new test scripts, executing the new test scripts
on the SUT to test unobserved behavior, and recording one or
more new states reached by executing the new test scripts on
the SUT in the behavior model.

In some implementations, the system under test is an enter-
prise web application, and executing a test script comprises
automating a web browser.

In some implementations, the actions further include
receiving a URL of the enterprise web application; receiving
login credentials for a plurality users of the web application;
receiving a scope definition for testing the web application,
the scope definition specifying the initial test script; and auto-
mating a respective web browser for each user and directing
each web browser to the URL of the web application to supply
the login credentials of the respective user.

In some implementations, the scope definition specifies a
reset script for resetting the enterprise web application to a
reset state.

In some implementations, the scope definition specifies an
initial user script for each user, and wherein automating a
respective web browser for each user comprises executing the
initial user script for each user.

In some implementations, iteratively refining the behavior
model comprises determining whether a new state corre-
sponds to an existing state in the behavior model, and if not,

10

15

20

25

30

35

40

45

50

55

60

65

2

generating at least one new test script if the new state com-
prises at least one interactive element in the user interface,
and if so, not generating any new test scripts for the new state.

In some implementations, determining whether a new state
corresponds to an existing state comprises: determining a
plurality of potential events that a user can trigger in the new
state; and comparing the potential events for the new state to
each recorded state in the behavior model until a correspond-
ing state is found or all of the recorded states have been
compared.

In some implementations, iteratively refining the behavior
model comprises determining whether a new state corre-
sponds to a navigational event or a functional event, and if the
new event corresponds to a functional event, recording the
new state in the behavior model, and if the new event corre-
sponds to a navigational event, not recording the new state in
the behavior model.

Insome implementations, the SUT is configured to provide
a plurality of functions via a plurality of different views, and
determining whether the new state corresponds to a naviga-
tional event or a functional event comprises determining
whether the new state corresponds to an event that triggers a
different view in the user interface of the SUT.

In some implementations, the actions further comprise
identifying candidate functional events by extracting, from
the user interface of the SUT, a document object model
(DOM) for each of the plurality of different views and iden-
tifying interactive Hypertext Markup Language (HTML) ele-
ments as candidate functional events.

In some implementations, the actions further comprise
storing the behavior model as a directed graph comprising a
node for each recorded state in the behavior model and a
plurality of edges each representing an event that can be
triggered by the user interface of the SUT.

In some implementations, an event that can be triggered by
the user interface of the SUT is an interactive Hypertext
Markup Language (HTML) element.

In some implementations, generating a new test script
comprises: receiving a document object model (DOM) for the
user interface of the SUT; for each event of a plurality of
potential events that a user can trigger in the DOM, generating
auser interface script that, when executed, triggers that event.

In some implementations, the actions further comprise fil-
tering the potential events before generating the user interface
scripts.

In some implementations, filtering the potential events
comprises removing deactivated elements and invisible ele-
ments from the DOM.

In some implementations, the actions further comprise per-
forming regression testing on the SUT using the behavior
model.

The present disclosure also provides a computer-readable
storage medium coupled to one or more processors and hav-
ing instructions stored thereon which, when executed by the
one or more processors, cause the one or more processors to
perform operations in accordance with implementations of
the methods provided herein.

The present disclosure further provides a system for imple-
menting the methods provided herein. The system includes
one or more processors, and a computer-readable storage
medium coupled to the one or more processors having
instructions stored thereon which, when executed by the one
or more processors, cause the one or more processors to
perform operations in accordance with implementations of
the methods provided herein.

It is appreciated that methods in accordance with the
present disclosure can include any combination of the aspects

US 9,304,892 B2

3

and features described herein. That is, methods in accordance
with the present disclosure are not limited to the combina-
tions of aspects and features specifically described herein, but
also include any combination of the aspects and features
provided.

The details of one or more implementations of the present
disclosure are set forth in the accompanying drawings and the
description below. Other features and advantages of the
present disclosure will be apparent from the description and
drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 depicts an example high-level architecture in accor-
dance with implementations of the present disclosure.

FIGS. 2A and -2B depict example behavior models repre-
sented as directed graphs.

FIG. 3 depicts an example process that can be executed in
accordance with implementations of the present disclosure.

FIG. 4 is a schematic illustration of example computer
systems that can be used to execute implementations of the
present disclosure.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Implementations of the present disclosure are generally
directed to a modeling system for determining a behavior
model of a computing system under test (SUT). In some
examples, the behavior model can be used for program com-
prehension and deriving executable test scripts using model
based testing (MBT)tools. The modeling system observes the
behavior of the SUT through the user interface of the SUT,
and iteratively generates and executes test scripts to explore
unobserved behavior. The modeling system determines the
behavior model by recording states of the SUT, e.g., where a
state is a set of events that can be triggered using the user
interface of the SUT. The resulting behavior model can be
used for testing the SUT, e.g., regression testing the SUT, or
for program comprehension, or for other purposes.

FIG. 1 depicts an example architecture 100 in accordance
with implementations of the present disclosure. The example
architecture 100 includes a modeling system 102 and a SUT
104. In some implementations, the SUT 104 is an enterprise
web application executing on a server of one or more com-
puters remote from the modeling system. In some implemen-
tations, the modeling system 102 and the SUT 104 are both
applications executing on a system of one or more computers.
For example, the SUT 104 can execute within a virtual
machine executing on the system of one or more computers.
Implementations of the present disclosure are applicable to
any appropriate application or computing environment and
are not limited to the examples and implementations dis-
cussed herein.

The modeling system 102 includes a crawl controller 106
configured to determine a behavior model 108 for the SUT
104. The crawl controller 106 executes, using a user interface
of'the SUT 104 and one of the actors 112, an initial test script
on the SUT 104. The crawl controller 106 records, after
executing the initial test script, a state of the SUT 104 in the
behavior model 108 by observing one or more events that can
be triggered by the user interface of the SUT 104. The crawl
controller can navigate through different user interface views
of the SUT 104 with each actor 112 and extract a set of
elements from the user interface view of the SUT 104.

10

15

25

40

45

4

The crawl controller 106 then iteratively refines the behav-
ior model 108 until an end condition is reached. While itera-
tively refining the behavior model, the crawl controller 106
generates new test scripts to test unobserved behavior,
executes the new test scripts on the SUT, and records new
states reached by executing the new test scripts of the SUT
104 in the behavior model 108. The test scripts can be stored
in a repository 118 with the model 108.

In some examples, the SUT 104 is an enterprise web appli-
cation. The crawl controller 106 executes the test scripts by
emulating one or more actors 112 using one or more web
browsers 114 that communicate with the enterprise web
application, e.g., over the Internet or another data communi-
cations network. The web browsers can be automated, for
example, using Selenium.

Configuration information 110, which can be provided by,
e.g., a software developer or test engineer, specifies a scope
definition for the modeling system. The scope definition
specifies the initial test script and information for emulating
the actors, e.g., login credentials for users of the application
and a series of steps for each user to take in interacting with
the application. The configuration information can also
specify a series or set of parts of the user interface (views)
which the crawl controller can use to extract state informa-
tion. The configuration information can include a uniform
resource locator (URL) for the enterprise web application or
a URL for each actor. The configuration information can also
include a reset script for resetting the enterprise web applica-
tion to a reset state, e.g., the initial state (e.g., state “0” in FI1G.
2A).

In some examples, the modeling system 102 includes one
or more event listeners 116 to register to actor and model
events. These events can include, e.g., an event when an actor
clicks on an element, an event when an actor navigates to a
URL, and an event when an edge or state is added to the
model. Event listeners can be used to implement test oracles
searching for certain keywords in text such as “error” or
checking if certain user interface elements are visible such as
an error pop-up, e.g., after an actor clicked an element and
then performed some actions, e.g., taking a screenshot and
logging the event. Event listeners can also be used to generate
and insert input data for input forms.

After an actor trigger an event in the SUT 104, the crawl
controller 106 determines whether the resulting new state of
the SUT 104 corresponds to an existing state in the behavior
model 108. In some implementations, the crawl controller
106 determines whether the new state corresponds to an exist-
ing state by comparing potential events that a user can trigger
in the new state using the user interface with each recorded
state in the behavior model 108 until a corresponding state is
found or all of the recorded states have been compared. The
crawl controller can also analyze text, e.g., “status: shipped.”

Ifthe new state does not correspond to an existing state, the
crawl controller 106 adds the new state to the behavior model
108 and generates new test scripts for potential events that a
user can trigger in the new state. The crawl controller 106 can
then iteratively explore the SUT 104 for unobserved behavior
by executing the new test scripts. In some examples generat-
ing a new test script includes receiving a document object
model (DOM) for the user interface of the SUT 104 and, for
each potential event that a user can trigger in the DOM,
generating a user interface script that, when executed, triggers
the event. The potential events can be filtered, e.g., by remov-
ing deactivated elements and invisible elements from the
DOM. The user can also filter/remove other elements by
changing the default configuration, which can reduce runt-
ime.

US 9,304,892 B2

5

If the new state does correspond to an existing state, then
the crawl system does not add the new state to the behavior
model 108. The crawl controller 106 can continue to itera-
tively explore the SUT 104 for unobserved behavior if there
are new test scripts, previously generated, that have not yet
been executed, or the crawl controller 106 can reach an end
condition indicating that the behavior model 108 is complete.
The end condition can be, e.g., a configured timeout, or a
number of states recorded in the model.

In some implementations, the crawl controller 106 deter-
mines whether an event triggered through the user interface of
the SUT 104 is a navigational event or a functional event. If
the event is a navigational event, then the crawl controller 106
does not add the resulting new state to the behavior model
108. Ifthe event is a functional event, then the crawl controller
106 does add the new state to the behavior model 108. This
can be useful, for example, to avoid capturing volatile specit-
ics of the user interface that are likely to change during the
development of the SUT 104.

In general, a navigational event does not lead to a new state.
A navigational event results in a reflexive transition, which
can be included (but may not be displayed) in the behavior
model. If the crawl controller 106 detects a navigational
event, it checks the configuration 110 (or, e.g., a configuration
of'a respective actor) for a maximum crawl/click depth. If the
max click depth is not reached, the crawl controller 106
checks if the navigational event leads to a new view with
potential functional actions, by observing the active interac-
tive user interface elements before and after executing the
navigational event. If the navigational event activates new
interactive user interface elements, a test script for each ele-
ment is generated, that executes the navigational event fol-
lowed by clicking the interactive user interface element. This
way navigational actions may not be included in the behavior
model, but in the generated test scripts, which are easier to
change in case of user interface changes. This can make the
model more stable to user interface changes.

In some examples, the SUT 104 is configured to provide
functions via different views, e.g., windows in a graphical
user interface (GUI) or different web pages of a web appli-
cation, and determining whether a new state corresponds to a
navigational event or a functional event includes determining
whether the new state corresponds to an event that triggers a
different view in the user interface of the SUT 104. Events
that trigger different views can be classified as navigational
events. In some examples, candidate functional events are
identified by extracting, from the user interface of the SUT, a
DOM for each of the different views presented and identify-
ing interactive elements, e.g., interactive Hypertext Markup
Language (HTML) elements, as candidates for user interface
elements that can cause functional events. A different DOM
can be extracted for each actor defined in the configuration.

In some implementations, the modeling system 102 stores
the behavior model 108 as a directed graph. The directed
graph can include a node for each recorded state in the behav-
ior model 108 and edges between nodes. Each edge repre-
sents an event that can be triggered using the user interface of
the SUT to transition from the states represented by the nodes
connected to the edge. In some examples, the stored behavior
model 108 is used for testing the SUT 104, e.g., by perform-
ing regression testing. In some examples, edges can represent
the execution of a complex event by one of the actors 112 on
the SUT 104. Each edge can be linked to an actor 112 and a
generated test script including one or more navigational
events followed by a functional event.

FIGS. 2A and 2B depict example behavior models repre-
sented as directed graphs. A modeling system, e.g., the mod-

10

15

20

25

30

35

40

45

50

55

60

65

6

eling system 102 of FIG. 1, can generate the behavior models
of'a system under test (SUT), e.g. the SUT 104 of FIG. 1.

FIG. 2A depicts an initial behavior model 200 with two
nodes 202 and 204 representing two different states of a
system under test (SUT), labeled “0” and “1.” The modeling
system begins by observing that the SUT is in state “0” and,
by executing an initial test script, triggers a “request” event
using the user interface of the SUT to cause the SUT to move
to state “1.” An edge 206 between the nodes 202 and 204
indicates that, from state “0,” triggering the “request” event
(e.g., using an actor) causes the SUT to move to state “1.”

The modeling system, observing the state of the SUT after
the “request” event, determines that there are three potential
events that a user can trigger using the user interface, a “con-
firm” event, a “decline” event, and a “revoke” event. The
modeling system can refine the model by generating test
scripts to observe the behavior of the system after triggering
each of these events. The events may be executed by different
actors, e.g., an employee (revoke) and a manager (confirm,
decline).

FIG. 2B depicts a refined behavior model 220 with two
additional nodes 222 and 224 representing two new states of
the SUT, labeled “2” and “3.” The modeling system created
this refined model from the initial model by executing test
scripts for the potential events of the initial model 200 and
observing the effects of executing the events.

One edge 226 indicates that the SUT moved from state “1”
to state “2” after triggering the “confirm” event. Another edge
228 indicates that the SUT moved from state “2” to state “3”
after triggering an “order” event available in state “2.”
Another edge 230 indicates that the SUT moved from state
“2” to existing state “0” after triggering a “revoke” event.
Another edge 232 indicates that the SUT moved from state
“1” to existing state “0” after triggering a “revoke” event.
Another edge 234 indicates that the SUT moved from state
“1” to existing state “0” after triggering a “decline” event.

In some implementations, the model is a labeled, directed
graph, denoted by a tuple, e.g., <A,N,V,v,,E> where

(1) A is a set of actors representing users with different
roles performing actions on the Ul of the SUT

(2) N is a set of navigational actions for navigating to
different views of the SUT’s Ul

(3) V is a set of vertices representing the states of the SUT.
Each vertex veV represents an abstraction over Ul ele-

ments in SeP,.; (AxN), such as the set of interactive Ul
elements.

(4) v,€V represents the initial state of the SUT.

(5) E is a set of directed edges between vertices (states).
Each edge (v,, v,)eE is labeled by a reference to a
relation (aeA, seS), where s is a generated action
sequence (test script) comprising an optional sequence
of navigational actions neN to reach a certain view on the
SUT’s UI, followed by a functional action that is active
on that view. Two vertices v, and v, are connected by an
edge (v,, v,) iff executing s with actor a in state v, leads
to state v,.

FIG. 3 depicts an example process 300 that can be executed
in accordance with implementations of the present disclo-
sure. In some examples, the example process 300 can be
provided as one or more computer-executable programs
executed using one or more computing devices. For example,
the modeling system 102 of FIG. 1 can execute the process in
determining a behavior model for a system under test (SUT),
e.g., the SUT 104 of FIG. 1.

Configuration information is received (302). In some
examples, the configuration information is provided by a test
engineer or a development engineer. The configuration infor-

US 9,304,892 B2

7

mation can include, e.g., a scope definition, one or more user
identifiers and login credentials for the user identifiers, initial
test scripts for each user identifier, and so on.

The initial test script or scripts are executed (304), and the
current state of the SUT is observed (306). It is determined
whether the current state is a new state or whether the current
state corresponds to an existing state in the model (308). [fthe
state is a new state, the new state is recorded (310), e.g., by
adding a node and an edge to a directed graph. New test
scripts are generated (312) based on potential events that can
be triggered through the user interface ofthe SUT by an actor.
One of the new test scripts is selected and executed (314), and
then the current state is observed (return to 306).

If the current state corresponds to an existing state, it is
determined whether there are more test scripts to execute
(316), e.g., by searching the model for pending actions or
events. If there are no more test scripts, the behavior model is
stored (320), e.g., as a directed graph. The behavior model can
be stored after each change, e.g., adding an edge or state. If
there are more scripts, then the SUT is reset or backtracked as
necessary to reach a state to start one of those scripts, and that
script is executed (314).

The process 300 can be implemented in various ways, for
example, using Java with Selenium for web browser automa-
tion. The following are example routines that can be used in
implementing the process.

Algorithm 1, provided below, shows the initialization of
the process for determining the behavior model. The process
is parameterized with a state sO in which crawling starts and
an initial graph, which is iteratively built up over the set of
states. First, the initial state s0 of the SUT is retrieved (Line 1).
A state has a set of potential events which are triggered
through the user interface of the SUT in that state; for the
initial state sO the set of potential events is set to the start event
defined in the configuration (Line 2). Furthermore, we main-
tain a set of pending states Sp which are yet unobserved, and
the set of pending states Sp is initialized with s0. An empty
graph is created and s0 is set as initial state (lines 4-5). The
crawling procedure is called with sO and the graph (Line 6).

Algorithm 1: INIT

Data: set of actors A
Data: crawl config
Data: set of pending states S,
Output: graph
1 so = RETRIEVESTATE();
2 sq:pending < {config.startEvent};
38, —{so}
4 graph < new PropertyGraph();
5 graph.initialState < sg;
6 return CRAWL(s,, graph);

The state of the SUT is retrieved as shown in Algorithm 2,
provided below. For each actor, the DOMs of the views
defined in the actor configuration are retrieved (Line 5),
removing deactivated and invisible HTML elements (Line 6).
Interactive HTML elements are extracted from the altered
DOM df and added to the state’s multiset of events (Line 7).
Two states are considered as equal if and only if the set of
distinct elements in the multiset of events is equal. Text can
also be used for state distinction, and the kind of text that can
be used can be restricted to certain keywords, e.g., text that
includes “status:”. For each distinct event, a Ul script is gen-
erated that triggers the event by navigating to the respective
view with the respective actor and clicking the HTML ele-
ment associated with the event (Line 10).

20

25

40

45

50

8

Algorithm 2: RETRIEVESTATE

Data: set of actors A

Output: current state s of the SUT
1 s < new State();
2 for each actor € A do

3V < actorconfig.views;
4 for each view e V do
5 dom < actor.retrieveDom(view);
6 d,< FILTER(dom);
7 s.events <= s.events U EVENTS (actor; view; dg;
8 end
9 end
10 GENERATESCRIPTS(s.events);
11 returns;

Algorithm 3, provided below, shows the crawl procedure
building up the behavior model. In each iteration, the current
state of the SUT s0 is checked for pending events. If the set is
not empty, an event is removed (Lines 2-3) and the UT script
associated with the event is executed (Line 4). After the script
execution, the current state s1 of the SUT is retrieved and the
set of pending events, i.e., the events activated by the executed
script, is computed as the relative complement of the multiset
of'events in s1 with respect to the events in sO (Lines 5-6). The
current state s1 is added to the set of pending events Sp and s1,
as well as an edge from s0 to sl1, labeled with the triggered
event is added to the set of nodes and edges of the graph,
respectively (Lines 7-10). Finally, the crawling procedure is
called with s1 and the updated graph (Line 11). If the set of
pending events is empty, s0 is removed from Sp (Line 13). In
case there are still pending states in Sp, the backtracking
procedure (Algorithm 4) is called to reach a pending state sp
and the crawling procedure is called with sp (Lines 15-16). If

the set of pending states is empty, the graph is returned (Line
18).

Algorithm 3: CRAWL

Data: set of actors A
Data: set of pending states S,,
Input: current state s, of the SUT
Input: initial graph
Output: enriched graph
1 if'so. pending = Othen
event € sq. pending;
3 sgpending < sq.pending \ {event};
4 EXECUTESCRIPT(event);
5 s, — RETRIEVESTATE();
6 sp.pending < s .events \ sy.events;
7S, S, U{sl};
8 edge < new Edge(s,, event, s,);
9 graph.nodes <= graph.nodes U {s,};

10 graph.edges < graph.edges U {edge};
11 graph < CRAWL(s,, graph);
12 else

13 S, < S, {s};

14 ifS, = Othen

15 5, < BACKTRACK (s, S,.);
16 graph <= CRAWL(s,, graph);
17 else

18 return graph;

19 end

20 end

Algorithm 4, provided below, shows the backtracking pro-
cedure, which computes the shortest path from the current
state sO of the SUT to a pending state sp using Dijkstra’s
algorithm (Line 2) and executes the Ul scripts to reach sp
(Line 5). If the graph does not contain a path from s0 to a state
in Sp, the SUT is set to the initial state by executing the script

US 9,304,892 B2

9

provided in the configuration (Line 10), s0 is set to the initial
state, and the backtracking procedure is called again (Lines
11-12).

Algorithm 4: BACKTRACK

Data: graph

Data: crawl config

Input: current state sy of the SUT
Input: set of pending states S,
Output: pending state s,

1 foreachpeS§,do
2 edges < graph.shortestPath(se, p);
3 ifedges = Othen
4 for each e € edges do
5 EXECUTESCRIPT(e.event);
6 end
7 return RETRIEVESTATE();
8 end
9 end
10 EXECUTESCRIPT (config.initSut);

So < graph.initial State;
return BACKTRACK((so, S,,);

Referring now to FIG. 4, a schematic diagram of an
example computing system 400 is provided. The system 400
can be used for the operations described in association with
the implementations described herein. For example, the sys-
tem 400 may be included in any or all of the server compo-
nents discussed herein. The system 400 includes a processor
410, a memory 420, a storage device 430, and an input/output
device 440. The components 410, 420, 430, 440 are intercon-
nected using a system bus 450. The processor 410 is capable
of processing instructions for execution within the system
400. In one implementation, the processor 410 is a single-
threaded processor. In another implementation, the processor
410 is a multi-threaded processor. The processor 410 is
capable of processing instructions stored in the memory 420
or on the storage device 430 to display graphical information
for a user interface on the input/output device 440.

The memory 420 stores information within the system 400.
In one implementation, the memory 420 is a computer-read-
able medium. In one implementation, the memory 420 is a
volatile memory unit. In another implementation, the
memory 420 is a non-volatile memory unit. The storage
device 430 is capable of providing mass storage for the sys-
tem 400. In one implementation, the storage device 430 is a
computer-readable medium. In various different implemen-
tations, the storage device 430 may be a floppy disk device, a
hard disk device, an optical disk device, or a tape device. The
input/output device 440 provides input/output operations for
the system 800. In one implementation, the input/output
device 440 includes a keyboard and/or pointing device. In
another implementation, the input/output device 440 includes
a display unit for displaying graphical user interfaces.

The features described can be implemented in digital elec-
tronic circuitry, or in computer hardware, firmware, software,
or in combinations of them. The apparatus can be imple-
mented in a computer program product tangibly embodied in
an information carrier, e.g., in a machine-readable storage
device, for execution by a programmable processor; and
method steps can be performed by a programmable processor
executing a program of instructions to perform functions of
the described implementations by operating on input data and
generating output. The described features can be imple-
mented advantageously in one or more computer programs
that are executable on a programmable system including at
least one programmable processor coupled to receive data
and instructions from, and to transmit data and instructions to,

10

15

20

25

30

35

40

45

50

55

60

65

10

a data storage system, at least one input device, and at least
one output device. A computer program is a set of instructions
that can be used, directly or indirectly, in a computer to
perform a certain activity or bring about a certain result. A
computer program can be written in any form of program-
ming language, including compiled or interpreted languages,
and it can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gener-
ally, a processor will receive instructions and data from a
read-only memory or a random access memory or both. Ele-
ments of a computer can include a processor for executing
instructions and one or more memories for storing instruc-
tions and data. Generally, a computer can also include, or be
operatively coupled to communicate with, one or more mass
storage devices for storing data files; such devices include
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and optical disks. Storage
devices suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks. The processor and the memory can be
supplemented by, or incorporated in, ASICs (application-
specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as a
CRT (cathode ray tube) or LCD (liquid crystal display) moni-
tor for displaying information to the user and a keyboard and
apointing device such as a mouse or a trackball by which the
user can provide input to the computer.

The features can be implemented in a computer system that
includes a back-end component, such as a data server, or that
includes a middleware component, such as an application
server or an Internet server, or that includes a front-end com-
ponent, such as a client computer having a graphical user
interface or an Internet browser, or any combination of them.
The components of the system can be connected by any form
or medium of digital data communication such as a commu-
nication network. Examples of communication networks
include, e.g., alLAN, a WAN, and the computers and networks
forming the Internet.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

In addition, the logic flows depicted in the figures do not
require the particular order shown, or sequential order, to
achieve desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described
flows, and other components may be added to, or removed
from, the described systems. Accordingly, other implemen-
tations are within the scope of the following claims.

A number of implementations of the present disclosure
have been described. Nevertheless, it will be understood that
various modifications may be made without departing from
the spirit and scope of the present disclosure. Accordingly,
other implementations are within the scope of the following
claims.

US 9,304,892 B2

11

What is claimed is:

1. A computer-implemented method for determining a
behavior model of a computing system under test (SUT), the
method being executed using one or more processors and
comprising:

executing, using a user interface of the SUT, an initial test

script on the SUT;

recording, after executing the initial test script, a state of

the SUT in the behavior model by observing one or more
events that can be triggered using the user interface of
the SUT; and

iteratively refining the behavior model until an end condi-

tion is reached by determining whether a new state cor-
responds to a navigational event or a functional event,
and if the new event corresponds to a functional event,
recording the new state in the behavior model, generat-
ing one or more new test scripts, executing the new test
scripts on the SUT to test unobserved behavior, and
recording one or more new states reached by executing
the new test scripts on the SUT in the behavior model
and if the new event corresponds to a navigational event,
not recording the new state in the behavior model.

2. The method of claim 1, wherein the system under test is
an enterprise web application, and wherein executing a test
script comprises automating a web browser.

3. The method of claim 2, further comprising:

receiving a URL of the enterprise web application;

receiving login credentials for a plurality users of the web

application;
receiving a scope definition for testing the web application,
the scope definition specifying the initial test script; and

automating a respective web browser for each user and
directing each web browser to the URL of the web
application to supply the login credentials of the respec-
tive user.

4. The method of claim 3, wherein the scope definition
specifies a reset script for resetting the enterprise web appli-
cation to a reset state.

5. The method of claim 3, wherein the scope definition
specifies an initial user script for each user, and wherein
automating a respective web browser for each user comprises
executing the initial user script for each user.

6. The method of claim 1, wherein iteratively refining the
behavior model comprises determining whether a new state
corresponds to an existing state in the behavior model, and if
not, generating at least one new test script if the new state
comprises at least one interactive element in the user inter-
face, and if so, not generating any new test scripts for the new
state.

7. The method of claim 6, wherein determining whether a
new state corresponds to an existing state comprises:

determining a plurality of potential events that a user can

trigger in the new state; and

comparing the potential events for the new state to each

recorded state in the behavior model until a correspond-
ing state is found or all of the recorded states have been
compared.

8. The method of claim 1, wherein the SUT is configured to
provide a plurality of functions via a plurality of different
views, and wherein determining whether the new state corre-
sponds to a navigational event or a functional event comprises
determining whether the new state corresponds to an event
that triggers a different view in the user interface of the SUT.

9. The method of claim 1, further comprising identifying
candidate functional events by extracting, from the user inter-
face of the SUT, a document object model (DOM) for each of

20

30

35

40

45

50

55

65

12

the plurality of different views and identifying interactive
Hypertext Markup Language (HTML) elements as candidate
functional events.

10. The method of claim 1, further comprising storing the
behavior model as a directed graph comprising a node for
each recorded state in the behavior model and a plurality of
edges each representing an event that can be triggered by the
user interface of the SUT.

11. The method of claim 10, wherein an event that can be
triggered by the user interface of the SUT is an interactive
Hypertext Markup Language (HTML) element.

12. The method of claim 1, wherein generating a new test
script comprises:

receiving a document object model (DOM) for the user

interface of the SUT,;

for each event of a plurality of potential events that a user

can trigger in the DOM, generating a user interface
script that, when executed, triggers that event.

13. The method of claim 12, further comprising filtering
the potential events before generating the user interface
scripts.

14. The method of claim 13, wherein filtering the potential
events comprises removing deactivated elements and invis-
ible elements from the DOM.

15. The method of claim 1, further comprising performing
regression testing on the SUT using the behavior model.

16. A non-transitory computer-readable storage medium
coupled to one or more processors and having instructions
stored thereon which, when executed by the one or more
processors, cause the one or more processors to perform
operations for determining a behavior model of a computing
system under test, the operations comprising:

executing, using a user interface of the SUT, an initial test

script on the SUT;

recording, after executing the initial test script, a state of

the SUT in the behavior model by observing one or more
events that can be triggered using the user interface of
the SUT; and

iteratively refining the behavior model until an end condi-

tion is reached by determining whether a new state cor-
responds to a navigational event or a functional event,
and if the new event corresponds to a functional event,
recording the new state in the behavior model, generat-
ing one or more new test scripts, executing the new test
scripts on the SUT to test unobserved behavior, and
recording one or more new states reached by executing
the new test scripts on the SUT in the behavior model
and if the new event corresponds to a navigational event,
not recording the new state in the behavior model.

17. A system, comprising:

a computing device; and

non-transitory a computer-readable storage device coupled

to the computing device and having instructions stored

thereon which, when executed by the computing device,

cause the computing device to perform operations for

determining a behavior model of a computing system

under test, the operations comprising:

executing, using a user interface of the SUT, an initial
test script on the SUT;

recording, after executing the initial test script, a state of
the SUT in the behavior model by observing one or
more events that can be triggered using the user inter-
face of the SUT; and

iteratively refining the behavior model until an end con-
dition is reached by determining whether a new state
corresponds to a navigational event or a functional
event, and if the new event corresponds to a functional

US 9,304,892 B2
13

event, recording the new state in the behavior model,
generating one or more new test scripts, executing the
new test scripts on the SUT to test unobserved behav-
ior, and recording one or more new states reached by
executing the new test scripts on the SUT in the 5
behavior model and if the new event corresponds to a
navigational event, not recording the new state in the
behavior model.

#* #* #* #* #*

14

